Prodrug Strategies for the Development of β-l-5-((E)-2-Bromovinyl)-1-((2 S,4 S)-2-(hydroxymethyl)-1,3-(dioxolane-4-yl))uracil (l-BHDU) against Varicella Zoster Virus (VZV)

J Med Chem. 2023 May 25;66(10):7038-7053. doi: 10.1021/acs.jmedchem.3c00545. Epub 2023 May 4.

Abstract

Varicella zoster virus (VZV) establishes lifelong infection after primary disease and can reactivate. Several drugs are approved to treat VZV diseases, but new antivirals with greater potency are needed. Previously, we identified β-l-5-((E)-2-bromovinyl)-1-((2S,4S)-2-(hydroxymethyl)-1,3-(dioxolane-4-yl))uracil (l-BHDU, 1), which had significant anti-VZV activity. In this communication, we report the synthesis and evaluation of numerous l-BHDU prodrugs: amino acid esters (14-26), phosphoramidates (33-34), long-chain lipids (ODE-l-BHDU-MP, 38, and HDP-l-BHDU-MP, 39), and phosphate ester prodrugs (POM-l-BHDU-MP, 41, and POC-l-BHDU-MP, 47). The amino acid ester l-BHDU prodrugs (l-phenylalanine, 16, and l-valine, 17) had a potent antiviral activity with EC50 values of 0.028 and 0.030 μM, respectively. The phosphate ester prodrugs POM-l-BHDU-MP and POC-l-BHDU-MP had a significant anti-VZV activity with EC50 values of 0.035 and 0.034 μM, respectively, and no cellular toxicity (CC50 > 100 μM) was detected. Out of these prodrugs, ODE-l-BHDU-MP (38) and POM-l-BHDU-MP (41) were selected for further evaluation in future studies.

MeSH terms

  • Amino Acids
  • Antiviral Agents / chemistry
  • Dioxolanes*
  • Herpesvirus 3, Human
  • Phosphates
  • Prodrugs* / chemistry
  • Uracil / chemistry
  • Uracil / pharmacology

Substances

  • Uracil
  • Prodrugs
  • Dioxolanes
  • Antiviral Agents
  • Amino Acids
  • Phosphates