One-step electrodeposited Ni3S2/Co9S8/NiS composite on Ni foam as high-performance electrode for supercapacitors

Dalton Trans. 2023 May 22;52(20):6823-6830. doi: 10.1039/d3dt00390f.

Abstract

Transition metal sulfides (TMSs) are considered as one of the promising electrode materials due to their fascinating redox reversibility and electronic conductivity. However, volume expansion during the charge/discharge process impedes their practical applications. The reasonable design of TMS electrode materials with unique morphology can improve the energy storage performance. Herein, we prepared the Ni3S2/Co9S8/NiS composite that is in situ grown on Ni foam (NF) via a one-step electrodeposition process. The optimized Ni3S2/Co9S8/NiS-7 shows a superhigh specific capacity of 2785.3 F g-1 at 1 A g-1 and remarkable rate capability. Furthermore, the as-assembled device displays a high energy density of 40.1 W h kg-1 at a power density of 799.3 W kg-1 and a satisfactory stability of 96.6% retention after 5000 cycles. This work provides a facile way to fabricate new TMS electrode materials for high-performance supercapacitors.