Background: We investigated how low marijuana (MJ) use levels, the typical use pattern in most adolescent users, affect cognitive maturation and schizophrenia risk.
Methods: In two complementary adolescent samples where the majority reported minimal MJ use, we compared cognitive performances before and after MJ use initiation. The Iowa sample (40 first-degree relatives and 54 second-degree relatives of patients with schizophrenia and 117 control subjects with no schizophrenia family history) underwent a battery of standardized neuropsychological tests at 0, 18, and 36 months. Based on self-administered Timeline Followback interviews, 26.5% of adolescents had emergent MJ use (eMJ) during follow-up. The second sample (n = 3463), derived from a birth cohort, received substance use and sustained attention assessments between ages 10 and 15 years. Mixed linear models and regression analyses tested the effects of eMJ on longitudinal changes in cognitive performance.
Results: In the Iowa sample, longitudinal changes in 5 of 8 cognitive domains were significantly associated with eMJ. On sustained attention, visuospatial working memory, and executive sequencing, adolescents with eMJ showed less age-expected improved performance. In addition, first-degree relatives with eMJ were less improved on processing speed and executive reasoning than first-degree relatives without eMJ. In the birth cohort, greater intraindividual variability in reaction times (indicative of poorer sustained attention) was significantly associated with more frequent MJ use and with recreational use levels.
Conclusions: Nonheavy MJ use disrupts normal adolescent maturation and compounds aberrant adolescent maturation associated with familial schizophrenia risk. These findings underscore the importance of reducing adolescent MJ access in the context of increased availability to high-potency MJ.
Keywords: Brain maturation; Cannabis; Genetic susceptibility; Longitudinal study; Schizophrenia.
© 2022 The Authors.