Bioelectrical impedance analysis (BIA) has proven to be particularly useful due to its inexpensive and rapid assessment of total body water and body density. However, recent fluid intake may confound BIA results since equilibration of fluid between intra- and extracellular spaces may take several hours and furthermore, ingested fluids may not be fully absorbed. Therefore, we aimed to evaluate the impact of different fluid compositions on the BIA. A total of eighteen healthy individuals (10 females, mean ± SD age of 23.1 ± 1.8 years) performed a baseline measurement of body composition before they consumed isotonic 0.9% sodium-chloride (ISO), 5% glucose (GLU) or Ringer (RIN) solutions. During the visit of the control arm (CON), no fluid was consumed. Further impedance analyses were conducted every 10 min after the fluid consumption for 120 min. We found statistically significant interactions between the effects of solution ingestion and time for intra- (ICW, p < 0.01) and extracellular water (ECW, p < 0.0001), skeletal muscle mass (SMM, p < 0.001) and body fat mass (FM, p < 0.01), respectively. Simple main effects analysis showed that time had a statistically significant effect on changes in ICW (p < 0.01), ECW (p < 0.01), SMM (p < 0.01) and FM (p < 0.01), while fluid intake did not have a significant effect. Our results highlight the importance of a standardized pre-measurement nutrition, with particular attention to hydration status when using a BIA for the evaluation of body composition.
Keywords: Ringer; electrolytes; extracellular water; fat mass; glucose; intracellular water; skeletal muscle mass; sodium chloride; visceral fat.