An Ultra-Thin, Microwave-Absorbing Wear Layer for Pavement Deicing

Materials (Basel). 2023 Apr 13;16(8):3080. doi: 10.3390/ma16083080.

Abstract

Microwave heating is widely employed in pavement deicing. However, it is difficult to improve the deicing efficiency because only a small part of the microwave energy is used and most of it is wasted. To improve the utilization efficiency of microwave energy and the deicing efficiency, we used silicon carbide (SiC)-replaced aggregates in asphalt mixtures to prepare an ultra-thin, microwave-absorbing wear layer (UML). The SiC particle size, SiC content, oil-stone ratio and thickness of the UML were determined. The effect of the UML on energy saving and material reduction was also evaluated. Results show that only a 10 mm UML was needed to melt a 2 mm ice layer within 52 s at -20 °C and rated power. In addition, the minimum layer thickness to meet the specification requirement (≥2000 με) of asphalt pavement was also 10 mm. SiC with larger particle sizes increased the temperature rise rate but decreased the temperature uniformity, instead increasing the deicing time. The deicing time of a UML with SiC particle size less than 2.36 mm was 35 s shorter than that of a UML with SiC particle size greater than 2.36 mm. Furthermore, more SiC content in the UML resulted in a higher temperature rise rate and less deicing time. The temperature rise rate and deicing time of the UML with 20% SiC were 4.4 times and 44% of those of the control group. When the target void ratio was 6%, the optimum oil-stone ratio of UML was 7.4%, and it had good road performance. Compared to overall heating, the UML saved 75% of power and SiC material under the same heating efficiency. Therefore, the UML reduces microwave deicing time and saves energy and material.

Keywords: asphalt concrete; energy saving; microwave deicing; ultra-thin microwave-absorbing wear layer.

Grants and funding

This research was funded by the National Natural Science Foundation of China, grant number 52078499; the Natural Science Foundation of Hunan province, grant number 2022JJ30730, and the Transportation Science and Technology Project of Hunan province, grant number 202246.