Over the last two decades, Vibrio vulnificus infections have emerged as an increasingly serious public health threat along the German Baltic coast. To manage related risks, near real-time (NRT) modelling of V. vulnificus quantities has often been proposed. Such models require spatially explicit input data, for example, from remote sensing or numerical model products. We tested if data from a hydrodynamic, a meteorological, and a biogeochemical model are suitable as input for an NRT model system by coupling it with field samples and assessing the models' ability to capture known ecological parameters of V. vulnificus. We also identify the most important predictors for V. vulnificus in the Baltic Sea by leveraging the St. Nicolas House Analysis. Using a 27-year time series of sea surface temperature, we have investigated trends of V. vulnificus season length, which pinpoint hotspots mainly in the east of our study region. Our results underline the importance of water temperature and salinity on V. vulnificus abundance but also highlight the potential of air temperature, oxygen, and precipitation to serve as predictors in a statistical model, albeit their relationship with V. vulnificus may not be causal. The evaluated models cannot be used in an NRT model system due to data availability constraints, but promising alternatives are presented. The results provide a valuable basis for a future NRT model for V. vulnificus in the Baltic Sea.
Keywords: Baltic Sea; St. Nicolas House Analysis; Vibrio vulnificus; climate change; near real-time modelling; network inference; public health risk.