In a development of the ecosemiotic vivo-scape concept, a 'safety eco-field' is proposed as a model of a species response to the safety of its environment. The safety eco-field is based on the ecosemiotic approach which considers environmental safety as a resource sought and chosen by individuals to counter predatory pressure. To test the relative safety of different locations within a landscape, 66 bird feeders (BF) were deployed in a regular 15 × 15 m grid in a rural area, surrounded by shrubs, small trees, hedgerows, and buildings. On each of 48 days in November 2021 and February and March 2022, dried mealworms were placed on each BF and counts of larvae at each BF were made at noon and dusk. The European robin (Erithacus rubecula) and the great tit (Parus major) were the most regular visitors to the BFs. Land cover at each BF was recorded. Bird behaviour at the BFs was noted from direct video recordings of the birds at nine selected BFs, totalling 32 daily sessions in March. The different behaviours of the European robin and the great tit were observable. The safety eco-field changed according to the month and the time of day. The distance of the BF from the woodland edges seemed to be important only in the morning. In the afternoon, BFs that were more distant from the woodland edges received the highest number of visits. Weather conditions were found to influence the number of mealworms removed, but this requires further investigation. A significant relationship between land cover and the number of mealworm larvae removed from the BFs was observed. Within the grid of BF, three regions were distinguishable which were related to land cover in the safety eco-field process. The experimental framework confirms the adequacy, at least for birds that have cryptic predators, to map the landscape as a proxy of safety resource. From the video recordings it was noted that the European robin visits were distributed throughout the day without apparent temporal preferences, while the great tit visits were concentrated in the central part of the day. This result has the limitation of the short period of observation (March) and should be extended to the entire period of the experiment to eventually capture seasonal variation. The experimental evidence obtained confirms that the ecosemiotic-based models of safety eco-field are an efficient approach to explain bird feeding preferences and behaviours.
Supplementary information: The online version contains supplementary material available at 10.1007/s12304-023-09522-1.
Keywords: Bird feeding; Cryptic predators; Ecosemiotics; European robin; Great tit; Safety eco-field.
© The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.