This study was conducted to provide for the first time systematic data on how intermittent feeding with carbon (ethanol) affects the kinetics of pharmaceuticals degradation in a moving bed biofilm reactor (MBBR). The relationship between the degradation rate constants (K) of 36 pharmaceuticals and the length of famine was tested with 12 different feast-famine ratios: For 17 pharmaceuticals, intermittent feeding increased K with a factor of 3-17, while for six other pharmaceuticals, it decreased K. Concerning intermittent loading, three dependencies were detected: 1) for some compounds (e.g., valsartan, ibuprofen, iohexol), the K decreased linearly with carbon loading, 2) for three compounds (2 sulfonamides and benzotriazole) K increased linearly with carbon loading 3) for most compounds (e.g., beta blockers, macrocyclic antibiotics, candesartan, citalopram, clindamycin, gabapentin) K had a maximum around 6 d famine (with 2 d feast). Optimizing processes on MBBRs need therefore be conducted based on a prioritization of compounds.
Keywords: Biodegradation; Feast-famine; MBBR; Micropollutants; Wastewater treatment.
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.