Pt-based alloy nanoparticles have broad application prospects as cathode catalyst materials for proton-exchange membrane fuel cells (PEMFCs). Optimization of the oxygen adsorption energy is crucial to boost the performance of oxygen reduction catalysis. We successfully synthesized well-dispersed Pt1.2Ni tetrahedra and obtained the Pt1.2Ni/C catalyst adopting the one-pot synthetic protocol, which exhibits superb activity and good long-term stability for oxygen reduction reaction (ORR), achieving a mass activity of 1.53 A/mgPt at 0.90 VRHE, which is 12 times higher than that of commercial Pt/C. On combining X-ray photoelectron spectroscopy and density functional theory calculations, abundant water is adsorbed stably on the Pt1.2Ni alloy surface. We find that the intense interaction between the adsorbed O atom and adsorbed water can weaken the adsorption of oxygen, contributing to the ORR performance.
Keywords: adsorbed water; electron interaction; oxygen reduction reaction; platinum-based alloys; step site.