Crystal structure and electronic properties of low-dimensional hexamethylenediaminium lead halide perovskites

Dalton Trans. 2023 May 16;52(19):6388-6397. doi: 10.1039/d3dt00438d.

Abstract

This work reports on hybrid hexamethylenediaminium lead halide perovskites. The materials were prepared using wet synthesis and the subsequent precipitation from aqueous solution. Structural and morphological charactarization studies show their high degree of crystallinity and phase purity. The determined perovskites' structural parameters agree well with the literature reports. The recorded XPS and DRS data allowed for the first schematic representation of the perovskite band structures. The latter match well the results of DFT modeling. It is shown for the first time that the increase in the perovskite bandgaps is solely due to the increase in the anion electronegativity. Namely, as the anion electronegativity increases, the corresponding valence band energy decreases. In contrast, the electronegativity of the anions has no effect on the perovskite conduction band energies. The presented study deepens our understanding of the relationship between the crystal and electronic structures of low-dimensional hybrid halide perovskites.