A quasi-one-dimensional bulk thermoelectrics with high performance near room temperature

Sci Bull (Beijing). 2023 May 15;68(9):920-927. doi: 10.1016/j.scib.2023.04.017. Epub 2023 Apr 14.

Abstract

Pursuing efficient thermoelectricity from low-dimensional materials has been highly motivated since the seminal work of Hicks and Dresselhaus. In fact, many superior thermoelectric materials like Bi2Te3, Mg3Sb2/Mg3Bi2 and SnSe are quasi-two-dimensional (q2D), though the advantages of two-dimensionality appear to be diverse and sometimes controversial. Here, we report on a remarkably high thermoelectric performance in TlCu3Te2, which is quasi-one-dimensional (q1D) with a further reduced dimension. The thermoelectric figure of merit zT along its q1D axis amounts to 1.3 (1.5) at 300 (400) K, rivaling the best ever reported at these temperatures. The high thermoelectric performances benefit from, on one hand, large power factors derived from a center-hollowed, pancake-like Fermi pocket with q1D dispersion at the edge of a narrow band gap, and on the other hand, small lattice thermal conductivities caused by the large and anharmonic q1D lattice consisting of heavy, lone-pair-electron bearing (Tl+) and weakly-bonded (Cu+) ions. This compound represents the first bulk material with quasi-uniaxial thermoelectric transport of application level, offering a renewed opportunity to exploit reduced dimensionality for high-performance thermoelectricity.

Keywords: Pancake-like Fermi surface; Quasi-one-dimensional semiconductor; Thermoelectric figure of merit; Thermoelectric material.