In 2023, breast cancer brain metastases (BCBrM) remain a major clinical challenge gaining well-deserved attention. Historically managed with local therapies alone, systemic therapies including small molecule inhibitors and antibody-drug conjugates (ADCs) have shown unprecedented activity in recent trials including patients with brain metastases. These advancements stem from efforts to include patients with stable and active BCBrM in early- and late-phase trial design. Tucatinib added to trastuzumab and capecitabine improves intracranial and extracranial progression-free survival and overall survival in stable and active human epidermal growth factor receptor 2 (HER2+)-positive brain metastases. Trastuzumab deruxtecan (T-DXd) has both shown impressive intracranial activity in stable and active HER2+ BCBrMs challenging historical thinking of ADCs' inability to penetrate the central nervous system (CNS). T-DXd has shown potent activity in HER2-low (immunohistochemistry scores of 1+ or 2+, non-amplified by fluorescence in situ hybridization) metastatic breast cancer and will be studied in HER2-low BCBrM as well. Novel endocrine therapies including oral selective estrogen downregulators (SERDs) and complete estrogen receptor antagonists (CERANs) are being studied in hormone receptor-positive BCBrM clinical trials due to robust intracranial activity in preclinical models. Triple-negative breast cancer (TNBC) brain metastases continue to portend the worst prognosis of all subtypes. Clinical trials leading to the approval of immune checkpoint inhibitors have enrolled few BCBrM patients leading to a lack of understanding of immunotherapies contribution in this subgroup. Data surrounding the use of poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors in patients with germline BRCA mutation carriers with CNS disease is hopeful. ADCs including those targeting low-level HER2 expression and TROP2 are under active investigation in triple-negative BCBrMs.
Keywords: Brain metastases; Breast cancer; Drug development; Novel therapeutics; Systemic therapies.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.