Here, we examined the efficiencies of drinking water treatment processes for the removal and inactivation of human sapovirus (HuSaV). We applied a recently developed in vitro cell-culture system to produce purified solutions of HuSaV containing virus concentrations high enough to conduct virus-spiking experiments, to develop an integrated cell culture-polymerase chain reaction (ICC-PCR) assay to quantify the infectivity of HuSaV, and to conduct virus-spiking experiments. In virus-spiking coagulation-sedimentation-rapid sand filtration (CS-RSF) and coagulation-microfiltration (C-MF) experiments, HuSaV removals of 1.6-3.7-log10 and 1.2->4.3-log10, respectively, were observed. The removal ratios observed with CS-RSF were comparable and correlated with those of murine norovirus (MNV, a widely used surrogate for human noroviruses) and pepper mild mottle virus (PMMoV, a potential surrogate for human enteric viruses in physical and physicochemical drinking water treatment processes), and those observed with C-MF were higher than but still correlated with those of MNV and PMMoV, indicating that MNV and PMMoV are both potential surrogates for HuSaV in CS-RSF and C-MF. For astrovirus (AstV, a representative human enteric virus), removal ratios of 1.8-3.3-log10 and 1.1->4.0-log10 were observed with CS-RSF and C-MF, respectively. The removal ratios of AstV observed with CS-RSF were comparable and correlated with those of PMMoV, and those observed with C-MF were higher than but still correlated with those of PMMoV, indicating that PMMoV is a potential surrogate for AstV in CS-RSF and C-MF. When the efficacy of chlorine treatment was examined by using the developed ICC-PCR assay, 3.8-4.0-log10 inactivation of HuSaV was observed at a CT value (free-chlorine concentration [C] multiplied by contact time [T]) of 0.02 mg-Cl2·min/L. The infectivity reduction ratios of HuSaV were comparable with those of MNV. For AstV, 1.3-1.7-log10 and >3.4-log10 inactivation, as evaluated by ICC-PCR, was observed at CT values of 0.02 and 0.09 mg-Cl2·min/L, respectively. These results indicate that HuSaV and AstV are both highly sensitive to chlorine treatment and more sensitive than a chlorine-resistant virus, coxsackievirus B5 (1.3-log10 inactivation at a CT value of 0.4 mg-Cl2·min/L, as evaluated by the ICC-PCR assay).
Keywords: Astrovirus; Drinking water treatment; Human sapovirus; Integrated cell culture-PCR; Murine norovirus; Pepper mild mottle virus.
Copyright © 2023 Elsevier Ltd. All rights reserved.