To understand the genetic relationships of Castanea species, 16 phenotypic traits were measured, simple sequence repeat (SSR) markers were analyzed, and molecular identity cards (IDs) were constructed for 118 Castanea materials using fluorescent capillary electrophoresis. The coefficient of variation values of the 16 morphological traits of the test materials ranged from 11.11% to 60.38%. A total of 58 alleles were detected using six pairs of SSR core primers, with an average number of 9.7 alleles per locus. The average number of valid alleles per locus was 3.9419 and the proportion of valid alleles was 40.78%. A total of 105 genotypes were detected, and the number of genotypic species that could be amplified per primer pair ranged from 8 to 26. The mean value of the observed heterozygosity was 0.4986. The variation in the He, H, and PIC values was similar; the size of I value was approximately 2.21 times larger, and its mean number of variations was 0.7390, 0.7359, 0.6985, and 1.6015, respectively. The classification of 118 Castanea species was performed using three analytical methods: structure analysis, neighbor-joining (NJ) cluster analysis, and principal coordinate analysis (PCoA), and the results of the three methods were in high agreement. Six pairs of SSR core primers with high polymorphism and strong discriminatory properties were used to identify 118 Castanea plants, and a unique molecular ID card was constructed for each material. These results provide insight into the genetic diversity and population structure of Castanea plants and a theoretical basis for improving the phenomenon of mixed varieties and substandard plants in the Castanea plant market.
Keywords: Castanea; genetic diversity; molecular identity card; phenotypic traits; population structure; variety identification.