Damage Propagation by Cyclic Loading in Drilled Carbon/Epoxy Plates

Materials (Basel). 2023 Mar 28;16(7):2688. doi: 10.3390/ma16072688.

Abstract

Fiber reinforced composites are widely used in the production of parts for load bearing structures. It is generally recognized that composites can be affected both by monotonic and cyclic loading. For assembly purposes, drilling is needed, but holes can act as stress concentration notches, leading to damage propagation and failure. In this work, a batch of carbon/epoxy plates is drilled by different drill geometries, while thrust force is monitored and the hole's surrounding region is inspected. Based on radiographic images, the area and other features of the damaged region are computed for damage assessment. Finally, the specimens are subjected to Bearing Fatigue tests. Cyclic loading causes ovality of the holes and the loss of nearly 10% of the bearing net strength. These results can help to establish an association between the damaged region and the material's fatigue resistance, as larger damage extension and deformation by cyclic stress contribute to the loss of load carrying capacity of parts.

Keywords: bearing load; cyclic load; damage propagation; drilling damage.