Species relative abundance (SRA) is an essential attribute of biotic communities, which can provide an accurate description of community structure. However, the sampling method used may have a direct influence on SRA quantification, since the use of attractants (e.g., baits, light, and pheromones) can introduce additional sources of variation in trap performance. We tested how sampling aided by baits affect community data and therefore alter derived metrics. We tested our hypothesis on dung beetles using data from flight interception traps (FITs) as a baseline to evaluate baited pitfall trap performance. Our objective was to assess the effect of bait attractiveness on estimates of SRA and assemblage metrics when sampled by pitfall traps baited with human feces.Dung beetles were sampled at three terra firme primary forest sites in the Brazilian Amazon. To achieve our objective, we (i) identified species with variable levels of attraction to pitfall baited with human feces; (ii) assessed differences in SRA; and (iii) assessed the effect of bait on the most commonly used diversity metrics derived from relative abundance (Shannon and Simpson indices). We identified species less and highly attracted to the baits used, because most attracted species showed greater relative abundances within baited pitfall traps samples compared with our baseline. Assemblages sampled by baited pitfall traps tend to show lower diversity and higher dominance than those sampled by unbaited FITs. Our findings suggest that for ecological questions focused on species relative abundance, baited pitfall traps may lead to inaccurate conclusions regarding assemblage structure. Although tested on dung beetles, we suggest that the same effect could be observed for other insect taxa that are also sampled with baited traps. We highlight a need for further studies on other groups to elucidate any potential effects of using baits.
Keywords: Brazilian Amazon; community structure; flight interception trap; primary forest; terra firme.
© 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.