Since the discovery of X-rays in 1895, medical imaging systems have played a crucial role in medicine by permitting the visualization of internal structures and understanding the function of organ systems. Traditional imaging modalities including Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Ultrasound (US) present fixed two-dimensional (2D) images which are difficult to conceptualize complex anatomy. Advanced volumetric medical imaging allows for three-dimensional (3D) image post-processing and image segmentation to be performed, enabling the creation of 3D volume renderings and enhanced visualization of pertinent anatomic structures in 3D. Furthermore, 3D imaging is used to generate 3D printed models and extended reality (augmented reality and virtual reality) models. A 3D image translates medical imaging information into a visual story rendering complex data and abstract ideas into an easily understood and tangible concept. Clinicians use 3D models to comprehend complex anatomical structures and to plan and guide surgical interventions more precisely. This chapter will review the volumetric radiological techniques that are commonly utilized for advanced 3D visualization. It will also provide examples of 3D printing and extended reality technology applications in radiology and describe the positive impact of advanced radiological image visualization on patient care.
Keywords: 3D printing; 3D visualization; Computed Tomography (CT); Extended reality technology; Magnetic Resonance Imaging (MRI) and Ultrasound (US); Radiology.
© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.