The leading-edge CRISPR/CRISPR-associated technology is revolutionizing biotechnologies through genome editing. To track on/off-target events with emerging new editing techniques, improved bioinformatic tools are indispensable. Existing tools suffer from limitations in speed and scalability, especially with whole-genome sequencing (WGS) data analysis. To address these limitations, we have developed a comprehensive tool called CRISPR-detector, a web-based and locally deployable pipeline for genome editing sequence analysis. The core analysis module of CRISPR-detector is based on the Sentieon TNscope pipeline, with additional novel annotation and visualization modules designed to fit CRISPR applications. Co-analysis of the treated and control samples is performed to remove existing background variants prior to genome editing. CRISPR-detector offers optimized scalability, enabling WGS data analysis beyond Browser Extensible Data file-defined regions, with improved accuracy due to haplotype-based variant calling to handle sequencing errors. In addition, the tool also provides integrated structural variation calling and includes functional and clinical annotations of editing-induced mutations appreciated by users. These advantages facilitate rapid and efficient detection of mutations induced by genome editing events, especially for datasets generated from WGS. The web-based version of CRISPR-detector is available at https://db.cngb.org/crispr-detector, and the locally deployable version is available at https://github.com/hlcas/CRISPR-detector.
Keywords: Genetic background removal; Genome editing; On/off-target; Structural variation.
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.