Purpose: To evaluate the accuracy/agreement of a three-camera Catalyst Surface Guided Radiation Therapy (SGRT) system on a closed-gantry Halcyon for Free-Breathing (FB) and Deep Inspiration Breath Hold (DIBH) breast-only treatments.
Methods: The SGRT positioning agreement with Halcyon couch and cone-beam computed tomography (CBCT) was evaluated on phantom and by evaluation of 2401 FB and 855 DIBH breast-only treatment sessions. The DIBH agreement was evaluated using a programmable moving support. Dose agreement was evaluated for manual SGRT-assisted beam interruption and Halcyon arc beam interruption.
Results: Geometrical phantom agreement was < 0.4 mm. Couch and SGRT agreement for an anthropomorphic phantom resulted in 95% limits of agreement in Right-Left/Feet-Head/Posterior-Anterior (RL/FH/PA) directions of respectively ± 0.4/0.8/0.5 mm and ± 1.1/1.1/0.6 mm in the virtual and real isocenter. FB-SGRT-assisted patient positioning compared to CBCT positioning resulted in RL/FH/PA systematic differences of -0.1/0.1/2.0 mm with standard deviations of 2.7/2.8/2.4 mm. This mean systematic difference had three origins: a) couch sag/isocenter difference of ≤ 0.5 mm. b) Average reconstructed FB-CBCT images do not visually represent the average respiratory position. c) CBCT-based positioning focused on the inner thoracic interface, which can introduce a mean positioning difference between SGRT and CBCT. Manual SGRT-assisted beam interruption and arc interruptions resulted in mean gamma passing rates > 97% (0.5%/0.5 mm) and mean absolute differences < 0.3%.
Conclusions: Accuracy was comparable with breast-only C-arm SGRT techniques, with different tradeoffs. Depending on the patient's morphology, real-time tracking accuracy in the real isocenter can be reduced. This study demonstrates possible discordances between SGRT and CBCT positioning for breast.
Keywords: Catalyst Surface Guided Therapy (SGRT); Deep Inspiration Breath Hold (DIBH); Halcyon.
Copyright © 2023 Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. All rights reserved.