Objective: Recently, promising radiation-induced EDA2R gene expression (GE) changes after low level radiation could be shown. Stimulated by that, in this study, we intended to independently validate these findings and to further characterize dose-response relationships in comparison to FDXR and the γH2AX-DNA double-strand break (DSB) focus assay, since both assays are already widely used for biodosimetry purposes.
Materials and methods: Peripheral blood samples from six healthy human donors were irradiated ex vivo (dose: ranging from 2.6 to 49.7 mGy). Subsequently, the fold-differences relative to the sham irradiated reference group were calculated. Radiation-induced changes in GE of FDXR and EDA2R were examined using the quantitative real-time polymerase-chain-reaction (qRT-PCR). DSB foci were quantified in 100 γH2AX + 53BP1 immunostained cells employing fluorescence microscopy. Examinations were performed at single time points enabling sufficient detection of both endpoints.
Results: A significant increase in EDA2R GE relative to the unexposed control was observed in the range of 2.6 mGy (1.6-fold, p = .045) to 5.4 mGy (2.2-fold, p = .0002), whereas the copy numbers increased linearly up to 13.1-fold at 49.7 mGy. On the contrary, FDXR upregulation (2.2-fold) became significant after a 22.6 mGy exposure (p ≤ .02) and increased linearly up to 4-fold at 49.7 mGy. A significant increase in radiation-induced foci (relative to unexposed, RIF-fd) was observed after 11.3 mGy (RIF-fd: 1.5 ± 0.5, p ≤ .03), while the foci increased linearly up to 3-fold at 49.7 mGy. From this, the FDXR and RIF-fd slopes have shown comparability, while the EDA2R slope was five times higher. Nevertheless, the coefficient of variation (CV) of EDA2R was about 30% higher than for RIF-fd.
Conclusion: Higher radiation-induced EDA2R GE changes and a lower radiation detection level compared to RIF-fd and FDXR GE changes examined under optimal conditions ex vivo on human samples appear promising. Yet, our results represent just the beginning of further studies to be conducted in animal models for further time- and dose-dependent evaluation and additional examinations on radiologically examined patients to evaluate the impact of confounder, such as age, sex, social behavior, or diseases.
Keywords: EDA2R; FDXR; biomarker; low-level radiation exposure; qRT-PCR; γ-H2AX DSB foci.