Effects of Different Hydration Strategies in Young Men during Prolonged Exercise at Elevated Ambient Temperatures on Pro-Oxidative and Antioxidant Status Markers, Muscle Damage, and Inflammatory Status

Antioxidants (Basel). 2023 Mar 4;12(3):642. doi: 10.3390/antiox12030642.

Abstract

Physical exercise is associated with an increase in the speed of metabolic processes to supply energy to working muscles and endogenous heat production. Intense sweating caused by the work performed at high ambient temperatures is associated with a significant loss of water and electrolytes, leading to dehydration. This study aimed to examine the effectiveness of different hydration strategies in young men during prolonged exercise at elevated ambient temperatures on levels of pro-oxidative and antioxidant status, oxidative status markers (TAC/TOC), muscle cell damage (Mb, LDH), and inflammatory status (WBC, CRP, IL-1β). The study was conducted on a group of 12 healthy men with average levels of aerobic capacity. The intervention consisted of using various hydration strategies: no hydration; water; and isotonic drinks. The examination was di-vided into two main stages. The first stage was a preliminary study that included medical exami-nations, measurements of somatic indices, and exercise tests. The exercise test was performed on a cycle ergometers. Their results were used to determine individual relative loads for the main part of the experiment. In the second stage, the main study was conducted, involving three series of weekly experimental tests using a cross-over design. The change in plasma volume (∆PV) measured im-mediately and one hour after the exercise test was significantly dependent on the hydration strategy (p = 0.003 and p = 0.002, respectively). The mean values of oxidative status did not differ signifi-cantly between the hydration strategy used and the sequence in which the test was performed. Using isotonic drinks, due to the more efficient restoration of the body's water and electrolyte balance compared to water or no hydration, most effectively protects muscle cells from the negative effects of exercise, leading to heat stress of exogenous and endogenous origin.

Keywords: dehydration; exercise temperature; hydration; inflammatory status; muscle damage; pro-oxidative and antioxidant status.

Grants and funding

The experimental design was funded by the statutory research of the University of Physical Education in Krakow (GRANT 81/MN/INB/2015).