Luminescent solar concentrators (LSCs) concentrate light via luminescence within a planar-waveguide and have potential use for building-integrated photovoltaics. However, their commercialization and potential applications are currently hindered greatly by photon reabsorption, where emitted waveguided light is parasitically reabsorbed by a luminophore. Nanotetrapod semiconductor materials have been theorized to be excellent luminophores for LSCs owing to their inherently large Stokes shifts. Here we present the first nanotetrapod-based LSCs (5 × 5 × 0.3 cm3) reported in the literature. External quantum efficiencies as high as 4.9 ± 0.5% were achieved under AM1.5G conditions. We also perform an in-depth investigation by optical characterization of the different operational metrics of our nanotetrapod-based LSCs and show reabsorption to be eliminated (mean number of average reabsorption events per photon equal to 0.00) in our most extended nanotetrapod devices.
Keywords: absorption; heterostructures; light; luminescent solar concentrators; quantum dots; tetrapods.