Population analysis reveals the roles of DNA methylation in tomato domestication and metabolic diversity

Sci China Life Sci. 2023 Aug;66(8):1888-1902. doi: 10.1007/s11427-022-2299-5. Epub 2023 Mar 23.

Abstract

DNA methylation is an important epigenetic marker, yet its diversity and consequences in tomato breeding at the population level are largely unknown. We performed whole-genome bisulfite sequencing (WGBS), RNA sequencing, and metabolic profiling on a population comprising wild tomatoes, landraces, and cultivars. A total of 8,375 differentially methylated regions (DMRs) were identified, with methylation levels progressively decreasing from domestication to improvement. We found that over 20% of DMRs overlapped with selective sweeps. Moreover, more than 80% of DMRs in tomato were not significantly associated with single-nucleotide polymorphisms (SNPs), and DMRs had strong linkages with adjacent SNPs. We additionally profiled 339 metabolites from 364 diverse accessions and further performed a metabolic association study based on SNPs and DMRs. We detected 971 and 711 large-effect loci via SNP and DMR markers, respectively. Combined with multi-omics, we identified 13 candidate genes and updated the polyphenol biosynthetic pathway. Our results showed that DNA methylation variants could complement SNP profiling of metabolite diversity. Our study thus provides a DNA methylome map across diverse accessions and suggests that DNA methylation variation can be the genetic basis of metabolic diversity in plants.

Keywords: DNA methylation; domestication; mEWAS; mGWAS; metabolic diversity; multi-omics; tomato.

MeSH terms

  • DNA Methylation*
  • Domestication
  • Epigenesis, Genetic
  • Plant Breeding
  • Solanum lycopersicum* / genetics
  • Whole Genome Sequencing