The counterion-mediated controllable coacervation of nano-ions with polyelectrolytes

J Colloid Interface Sci. 2023 Jul:641:853-860. doi: 10.1016/j.jcis.2023.03.105. Epub 2023 Mar 20.

Abstract

Nano-ions can complex with polyelectrolytes for coacervates with hierarchical structures; however, the rational design of functional coacervations is still rare due to the poor understanding of their structure-property relationship from their complex interaction. Herein, 1 nm anionic metal oxide clusters, PW12O403-, with well-defined, mono-disperse structures are applied to complex with cationic polyelectrolyte and the system shows tunable coacervation via the alternation of counterions (H+ and Na+) of PW12O403-. Suggested from Fourier transform infrared spectroscopy (FT-IR) and isothermal titration studies, the interaction between PW12O403- and cationic polyelectrolytes can be modulated by the bridging effect of counterions via hydrogen bonding or ion-dipole interaction to carbonyl groups of polyelectrolytes. The condensed structures of the complexed coacervates are explored by small angle X-ray and neutron scattering techniques, respectively. The coacervate with H+ as counterions shows both crystallized and discrete PW12O403- clusters, with a loose polymer-cluster network in comparison to the system of Na+ which shows a dense packing structure with aggregated nano-ions filling the meshes of polyelectrolyte networks. The bridging effect of counterions helps understand the super-chaotropic effect observed in nano-ion system and provides avenues for the design of metal oxide cluster-based functional coacervates.

Keywords: Coacervate; Counterion; Nano-ion; Small angle scattering; Super-chaotropic effect.