Human serum-derived exosomes modulate macrophage inflammation to promote VCAM1-mediated angiogenesis and bone regeneration

J Cell Mol Med. 2023 Apr;27(8):1131-1143. doi: 10.1111/jcmm.17727. Epub 2023 Mar 25.

Abstract

During exogenous bone-graft-mediated bone defect repair, macrophage inflammation dictates angiogenesis and bone regeneration. Exosomes from different human cells have shown macrophage immunomodulation-mediated bone regeneration potential. However, the effect of human serum-derived exosomes (serum-Exo) on macrophage immunomodulation-mediated angiogenesis during bone defect repair has not been investigated yet. In this study, we explored the effects of serum-Exo on macrophage inflammation regulation-mediated angiogenesis during bone defect repair and preliminarily elucidated the mechanism. Healthy serum-Exo was isolated by ultracentrifugation. The effect of serum-Exo on LPS-induced M1 macrophage inflammation was analysed in vitro. The conditioned medium of serum-Exo-treated LPS-induced M1 macrophage (serum-Exo-treated M1 macrophage-CM) was used to culture human umbilical vein endothelial cells (HUVEC), and the effect on angiogenesis was analysed by western blot, qRT-PCR, etc. mRNA-sequencing of HUVECs was performed to identify deferentially expressed genes. Finally, the rat mandibular defect model was established and treated with Bio-Oss and Bio-Oss + Exo. The effect of the Bio-Oss + Exo combination on mandibular bone regeneration was observed by micro-computed tomography (micro-CT), haematoxylin and eosin (HE) staining, Masson staining, and immunohistochemical staining. Serum-Exo promoted the proliferation of RAW264.7 macrophages and reduced the expression of M1-related genes such as IL-6, IL-1β, iNOS, and CD86. Serum-Exo-treated M1 macrophage-CM induced the proliferation, migration, and angiogenic differentiation of HUVEC, as well as the expression of H-type blood vessel markers CD31 and endomucin (EMCN), compared with M1 macrophage-CM. Moreover, higher expression of vascular endothelial adhesion factor 1 (VCAM1) in HUVEC cultured with serum-Exo-treated M1 macrophage-CM compared with M1 macrophages-CM. Inhibition of VCAM1 signalling abrogated the pro-angiogenic effect of serum-Exo-treated M1 macrophage-CM on HUVEC. Local administration of serum-Exo during mandibular bone defect repair reduced the number of M1 macrophages and promoted angiogenesis and osteogenesis. Collectively, our results demonstrate the macrophage inflammation regulation-mediated pro-angiogenic potential of serum-Exo during bone defect repair possibly via upregulation of VCAM1 signalling in HUVEC.

Keywords: VCAM1; angiogenesis; bone regeneration; human serum exosomes; macrophage inflammation regulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Regeneration / genetics
  • Exosomes* / metabolism
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Inflammation / genetics
  • Inflammation / metabolism
  • Lipopolysaccharides / metabolism
  • Macrophages
  • Rats
  • X-Ray Microtomography

Substances

  • Bio-Oss
  • Lipopolysaccharides