Human society encompasses diverse social influences, and people experience events differently and may behave differently under such influence, including in forming an impression of others. However, little is known about the underlying neural relevance of individual differences in following others' opinions or social norms. In the present study, we designed a series of tasks centered on social influence to investigate the underlying relevance between an individual's degree of social conformity and their neural variability. We found that individual differences under the social influence are associated with the amount of inter-trial electroencephalogram (EEG) variability over multiple stages in a conformity task (making face judgments and receiving social influence). This association was robust in the alpha band over the frontal and occipital electrodes for negative social influence. We also found that inter-trial EEG variability is a very stable, participant-driven internal state measurement and could be interpreted as mindset instability. Overall, these findings support the hypothesis that higher inter-trial EEG variability may be related to higher mindset instability, which makes participants more vulnerable to exposed external social influence. The present study provides a novel approach that considers the stability of one's endogenous neural signal during tasks and links it to human social behaviors.
Keywords: decision change; inter-trial EEG variability; neural representation; social conformity.
© 2023 New York Academy of Sciences.