Multifunctional flower-like Ni particles/silicon carbide nanowires for infrared radar compatible stealth performance

J Colloid Interface Sci. 2023 Jul:641:414-427. doi: 10.1016/j.jcis.2023.03.020. Epub 2023 Mar 13.

Abstract

Alongside the rapid development of detection systems and improved detection accuracy, infrared/radar-compatible stealth materials have become the emphasis of current stealth technology research. Versatile flower-like Ni particles/silicon carbide nanowires (SiC NWs) composites for infrared radar stealth compatibility have been successfully prepared. Due to its special microstructure in combination with the multiple loss mechanisms of dielectric and magnetic, the minimum reflection loss (RLmin) achievable with the paraffin matrix mixture is -49.26 dB at a composite content of 50 wt%, which has a thickness of 1.9 mm and an effective absorption bandwidth (EAB) of 4.85 GHz. By increasing the absorbent content to 60 wt%, the EAB in the Ku band can attain 5.0 GHz at 1.8 mm thickness. Petal-shaped Ni particles are introduced to improve the impedance matching characteristics, increase interfacial polarisation and multiple scattering of electromagnetic (EM) wave, and enhance the microwave absorption properties. Simultaneously, the pure SiC NWs material can protect against infrared radiation emitted from the hand for more than 15 min, and the infrared (IR) reflectivity is improved in all three bands after the composite metal Ni particles. A novel formulation guide for the design of versatile and high-performance EM wave absorbing and infrared stealth materials is provided by this work.

Keywords: Bamboo-like SiC NWs; EM wave absorption properties; Electrostatic spinning; Flower-like Ni particles; Infrared stealth.