Background: Mpox (formerly known as monkeypox) outbreaks outside endemic areas peaked in July 2022, infecting > 85,000 people and raising concerns about our preparedness against this emerging viral pathogen. Licensed and approved for mpox, the JYNNEOS vaccine has fewer side effects than previous smallpox vaccines and demonstrated efficacy against mpox infection in humans. Comparing JYNNEOS vaccine- and mpox-induced immunity is imperative to evaluate JYNNEOS' immunogenicity and inform vaccine administration and design.
Methods: We examined the polyclonal serum (ELISA) and single B cell (heavy chain gene and transcriptome data) antibody repertoires and T cells (AIM and ICS assays) induced by the JYNNEOS vaccine as well as mpox infection.
Findings: Gene-level plasmablast and antibody responses were negligible and JYNNEOS vaccinee sera displayed minimal binding to recombinant mpox proteins and native proteins from the 2022 outbreak strain. In contrast, recent mpox infection (within 20-102 days) induced robust serum antibody responses to A29L, A35R, A33R, B18R, and A30L, and to native mpox proteins, compared to vaccinees. JYNNEOS vaccine recipients presented comparable CD4 and CD8 T cell responses against orthopox peptides to those observed after mpox infection.
Interpretation: JYNNEOS immunization does not elicit a robust B cell response, and its immunogenicity may be mediated by T cells.
Funding: Research reported in this publication was supported, in part, by the National Cancer Institute of the National Institutes of Health under Award Number U54CA267776, U19AI168631(VS), as well as institutional funds from the Icahn School of Medicine.