We propose a censored quantile regression model for the analysis of relative survival data. We create a hybrid data set consisting of the study observations and counterpart randomly sampled pseudopopulation observations imputed from population life tables that adjust for expected mortality. We then fit a censored quantile regression model to the hybrid data incorporating demographic variables (e.g., age, biologic sex, calendar time) corresponding to the population life tables of demographically-similar individuals, a population versus study covariate, and its interactions with the variables of interest. These latter variables can be interpreted as relative survival parameters that depict the differences in failure quantiles between the study participants and their population counterparts.
Keywords: excess mortality; population life tables; quantile regression with censoring; relative survival.
© 2023 Wiley-VCH GmbH.