Depth perception is a major issue in surgical augmented reality (AR) with limited research conducted in this scientific area. This study establishes a relationship between luminance and depth perception. This can be used to improve visualisation design for AR overlay in laparoscopic surgery, providing surgeons a more accurate perception of the anatomy intraoperatively. Two experiments were conducted to determine this relationship. First, an online study with 59 participants from the general public, and second, an in-person study with 10 surgeons as participants. We developed 2 open-source software tools utilising SciKit-Surgery libraries to enable these studies and any future research. Our findings demonstrate that the higher the relative luminance, the closer a structure is perceived to the operating camera. Furthermore, the higher the luminance contrast between the two structures, the higher the depth distance perceived. The quantitative results from both experiments are in agreement, indicating that online recruitment of the general public can be helpful in similar studies. An observation made by the surgeons from the in-person study was that the light source used in laparoscopic surgery plays a role in depth perception. This is due to its varying positioning and brightness which could affect the perception of the overlaid AR. We found that luminance directly correlates with depth perception for both surgeons and the general public, regardless of other depth cues. Future research may focus on comparing different colours used in surgical AR and using a mock operating room (OR) with varying light sources and positions.
Keywords: Augmented reality; depth perception; image guidance; laparoscopic surgery; luminance contrast; visualisation.