Precise wiring within sensory systems is critical for the accurate transmission of information. In the visual system, S-cone photoreceptors specialize in detecting short-wavelength light, crucial to color perception and environmental cue detection. S-cones form specific synapses with S-cone bipolar cells (SCBCs), a connection that is remarkably consistent across species. Yet, the molecular mechanisms guiding this specificity remain unexplored. To address this, we used the cone-dominant ground squirrel for deep-sequencing of cone subtype transcriptomes and identified Nrxn3 as an essential molecule for the S-cone to SCBC synapse. Using transgenic mouse models, we further examined the role of Nrxn3 in S-cones and discovered a significant reduction of SCBC connections in the absence of Nrxn3. This finding extends the known functions of neurexins, typically associated with synapse regulation, by highlighting their essential role in a specific synaptic connection for the first time. Moreover, the differentially expressed genes identified here pave the way for further investigations into the unique functions of cone subtypes.