In Situ Synchrotron XRD Characterization of Piezoelectric Al1-xScxN Thin Films for MEMS Applications

Materials (Basel). 2023 Feb 21;16(5):1781. doi: 10.3390/ma16051781.

Abstract

Aluminum scandium nitride (Al1-xScxN) film has drawn considerable attention owing to its enhanced piezoelectric response for micro-electromechanical system (MEMS) applications. Understanding the fundamentals of piezoelectricity would require a precise characterization of the piezoelectric coefficient, which is also crucial for MEMS device design. In this study, we proposed an in situ method based on a synchrotron X-ray diffraction (XRD) system to characterize the longitudinal piezoelectric constant d33 of Al1-xScxN film. The measurement results quantitatively demonstrated the piezoelectric effect of Al1-xScxN films by lattice spacing variation upon applied external voltage. The as-extracted d33 had a reasonable accuracy compared with the conventional high over-tone bulk acoustic resonators (HBAR) devices and Berlincourt methods. It was also found that the substrate clamping effect, leading to underestimation of d33 from in situ synchrotron XRD measurement while overestimation using Berlincourt method, should be thoroughly corrected in the data extraction process. The d33 of AlN and Al0.9Sc0.1N obtained by synchronous XRD method were 4.76 pC/N and 7.79 pC/N, respectively, matching well with traditional HBAR and Berlincourt methods. Our findings prove the in situ synchrotron XRD measurement as an effective method for precise piezoelectric coefficient d33 characterization.

Keywords: aluminum scandium nitride; micro-electromechanical system; piezoelectric coefficient; substrate clamping effect; synchrotron XRD.