Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive disease with poor prognosis. Acetylation modifications affect a great number of biological processes of malignant tumors. The current study aims at revealing the role of acetylation-related mechanism in TNBC progression. Methyltransferase like-3 (METTL3) was found to be downregulated in TNBC cells via quantitative polymerase chain reaction (qPCR) and western blot analyses. Co-Immunoprecipitation (Co-IP) and GST pulldown assays revealed the interaction between acetyl-CoA acetyltransferase 1 (ACAT1) and METTL3. Through further immunoprecipitation (IP) assay, we determined that ACAT1 stabilizes METTL3 protein via inhibiting the degradation of ubiquitin-proteasome. Functionally, ACAT1 inhibits TNBC cell migration and invasion. Moreover, nuclear receptor subfamily 2 group F member 6 (NR2F6) regulates ACAT1 expression at transcriptional level. Finally, we demonstrated that NR2F6/ACAT/METTL3 axis suppresses the migration and invasion of TNBC cells via METTL3. In conclusion, NR2F6 transcriptionally activates ACAT1 and promotes the suppressive effects of ACAT1-mediated METTL3 acetylation on TNBC cell migration and invasion.
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.