Age-Dependent Electroencephalogram Features in Infants Under Spinal Anesthesia Appear to Mirror Physiologic Sleep in the Developing Brain: A Prospective Observational Study

Anesth Analg. 2023 Dec 1;137(6):1241-1249. doi: 10.1213/ANE.0000000000006410. Epub 2023 Mar 7.

Abstract

Background: Infants under spinal anesthesia appear to be sedated despite the absence of systemic sedative medications. In this prospective observational study, we investigated the electroencephalogram (EEG) of infants under spinal anesthesia and hypothesized that we would observe EEG features similar to those seen during sleep.

Methods: We computed the EEG power spectra and spectrograms of 34 infants undergoing infraumbilical surgeries under spinal anesthesia (median age 11.5 weeks postmenstrual age, range 38-65 weeks postmenstrual age). Spectrograms were visually scored for episodes of EEG discontinuity or spindle activity. We characterized the relationship between EEG discontinuity or spindles and gestational age, postmenstrual age, or chronological age using logistic regression analyses.

Results: The predominant EEG patterns observed in infants under spinal anesthesia were slow oscillations, spindles, and EEG discontinuities. The presence of spindles, observed starting at about 49 weeks postmenstrual age, was best described by postmenstrual age ( P =.002) and was more likely with increasing postmenstrual age. The presence of EEG discontinuities, best described by gestational age ( P = .015), was more likely with decreasing gestational age. These age-related changes in the presence of spindles and EEG discontinuities in infants under spinal anesthesia generally corresponded to developmental changes in the sleep EEG.

Conclusions: This work illustrates 2 separate key age-dependent transitions in EEG dynamics during infant spinal anesthesia that may reflect the maturation of underlying brain circuits: (1) diminishing discontinuities with increasing gestational age and (2) the appearance of spindles with increasing postmenstrual age. The similarity of these age-dependent transitions under spinal anesthesia with transitions in the developing brain during physiological sleep supports a sleep-related mechanism for the apparent sedation observed during infant spinal anesthesia.

Publication types

  • Observational Study

MeSH terms

  • Anesthesia, Spinal*
  • Brain / physiology
  • Electroencephalography
  • Gestational Age
  • Humans
  • Infant
  • Sleep / physiology