The present study aimed at characterizing the possible biological activities of the multifunctional low molecular weight fractions (<3 kDa) peptides isolated from rainbow trout (Oncorhynchus mykiss) obtained by enzymatic hydrolysis. The fish protein hydrolysate (FPH) was tested for its antioxidant property along with its angiotensin converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities. In particular, the 2,2-diphenyl-1-picrylhydrazyl (DPPH), the ferric reducing antioxidant power (FRAP), the oxygen radical absorbance capacity (ORAC) assay and the 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays were carried out for the evaluation of the in vitro antioxidant activity. The cell-free ACE and DPP-IV inhibitory activity assays were also estimated, showing a dose-dependent inhibition. These biological properties were additionally quantified at the cellular level using human intestinal Caco-2 cells. Namely, the antioxidant activity was determined by evaluating the capability of the hydrolysate to reduce the H2O2-induced reactive oxygen species (ROS) and lipid peroxidation levels, and the DPP-IV activity assays show a reduction of enzyme activity of up to 27.57 ± 3.7% at 5 mg/mL. The results indicate that Oncorhynchus mykiss-derived peptides may have potential employment as health-promoting ingredients.
Keywords: angiotensin converting enzyme inhibitory properties; antioxidant activity; bioactive peptides; bioactivities; dipeptidyl peptidase-IV inhibitory properties; hydrolysates; rainbow trout.