Regulatory T cells (Tregs) possess a wide range of mechanisms for immune suppression. Among them, Granzyme B (GzmB) and perforin expressed by Tregs were shown to inhibit tumor clearance in previous reports, which contradicted the canonical roles of these cytotoxic molecules expressed by cytotoxic T cells and NK cells in antitumor immune responses. Given the ability of the tumor to manipulate the microenvironment, Treg-derived GzmB function may represent an important approach to aid in tumor growth as well as facilitating tumor metastasis. In this study, we utilized Treg-specific GzmB knockout (Foxp3creGzmBfl/fl) mice to test whether Treg-derived GzmB can aid in tumor progression and metastasis. Using an IL-2 complex to activate GzmB expression in the non-immunogenic B16-F10 tumor model, we provide evidence to show that GzmB produced by Tregs is important for spontaneous metastasis to the lungs. In addition, we depleted CD8 + T cells to selectively measure the impact of Treg-derived GzmB in an experimental lung metastasis model by intravenous injection of B16-F10 tumor cells; our results demonstrate that Treg-derived GzmB plays an important role in increasing the metastatic burden to the lungs.
Keywords: Granzyme B (GzmB); Immune suppression; Regulatory T cells (Tregs); Tumor metastasis.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.