Immunopanning is an efficient and reliable method for isolating primary cells from rodent brain tissue, making it a valuable tool for researchers interested in in vitro glial models. Here, we present an immunopanning protocol optimized for the isolation of Platelet-Derived Growth Factor Receptor Alpha positive (PDGFRα+) oligodendrocyte precursor cells (OPCs) from mouse brain tissue that results in a high yield of pure OPCs from minimal quantities of starting tissue.•The protocol presented here is optimized for a PDGFRα-dependent selection of mouse OPCs using a commercial antibody, accounting for the relatively weaker adhesion of OPCs to the anti-PDGFRα plate as compared to other oligodendrocyte lineage markers (e.g., MOG).•A modified papain digestion step, with 95% O2/5% CO2 gas that is humidified prior to perfusion, significantly enhances the yield of dissociated cells and final yield of OPCs.•Isolating OPCs at the PDGFRα+ stage permits the expansion of cells in culture, facilitating studies using transgenic mice, and enables studies on the development of the oligodendrocyte lineage without the spatial and temporal complexity of in vivo studies.
Keywords: Immunopanning; Immunopanning oligodendrocyte lineage cells from mouse brain; Mouse primary cells; Oligodendrocyte precursor cells; Oligodendrocyte purification; in vitro.
© 2023 The Authors.