Background: The clinical course and outcome of many diseases differ between women and men, with women experiencing a higher prevalence and more severe pathogenesis of autoimmune diseases. The precise mechanisms underlying these sex differences still remain to be fully understood. IRF5 is a master transcription factor that regulates TLR/MyD88-mediated responses to pathogen-associated molecular patterns (PAMPS) in DCs and B cells. B cells are central effector cells involved in autoimmune diseases via the production of antibodies and pro-inflammatory cytokines as well as mediating T cell help. Dysregulation of IRF5 expression has been reported in autoimmune diseases, including systemic lupus erythematosus, primary Sjögren syndrome, and rheumatoid arthritis.
Methods: In the current study, we analyzed whether the percentage of IRF5 positive B cells differs between women and men and assessed the resulting consequences for the production of inflammatory cytokines after TLR7- or TLR9 stimulation.
Results: The percentage of IRF5 positive B cells was significantly higher in B cells of women compared to men in both unstimulated and TLR7- or TLR9-stimulated B cells. B cells of women produced higher levels of TNF-α in response to TLR9 stimulation.
Conclusions: Taken together, our data contribute to the understanding of sex differences in immune responses and may identify IRF5 as a potential therapeutic target to reduce harmful B cell-mediated immune responses in women.
Keywords: B cells; Interferon regulatory factor 5; Sex differences; Toll-like receptor 7/9; Tumor necrosis factor-α.
© 2023. The Author(s).