Tuberculosis (TB) infections among children (below 15 years) is a growing concern, particularly in resource-limited settings. However, the TB burden among children is relatively unknown in Kenya where two-thirds of estimated TB cases are undiagnosed annually. Very few studies have used Autoregressive Integrated Moving Average (ARIMA), and hybrid ARIMA models to model infectious diseases globally. We applied ARIMA, and hybrid ARIMA models to predict and forecast TB incidences among children in Homa Bay and Turkana Counties in Kenya. The ARIMA, and hybrid models were used to predict and forecast monthly TB cases reported in the Treatment Information from Basic Unit (TIBU) system by health facilities in Homa Bay and Turkana Counties between 2012 and 2021. The best parsimonious ARIMA model that minimizes errors was selected based on a rolling window cross-validation procedure. The hybrid ARIMA-ANN model produced better predictive and forecast accuracy compared to the Seasonal ARIMA (0,0,1,1,0,1,12) model. Furthermore, using the Diebold-Mariano (DM) test, the predictive accuracy of ARIMA-ANN versus ARIMA (0,0,1,1,0,1,12) model were significantly different, p<0.001, respectively. The forecasts showed a TB incidence of 175 TB cases per 100,000 (161 to 188 TB incidences per 100,000 population) children in Homa Bay and Turkana Counties in 2022. The hybrid (ARIMA-ANN) model produces better predictive and forecast accuracy compared to the single ARIMA model. The findings show evidence that the incidence of TB among children below 15 years in Homa Bay and Turkana Counties is significantly under-reported and is potentially higher than the national average.
Copyright: © 2023 Siamba et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.