Development and evaluation of a live birth prediction model for evaluating human blastocysts from a retrospective study

Elife. 2023 Feb 22:12:e83662. doi: 10.7554/eLife.83662.

Abstract

Background: In infertility treatment, blastocyst morphological grading is commonly used in clinical practice for blastocyst evaluation and selection, but has shown limited predictive power on live birth outcomes of blastocysts. To improve live birth prediction, a number of artificial intelligence (AI) models have been established. Most existing AI models for blastocyst evaluation only used images for live birth prediction, and the area under the receiver operating characteristic (ROC) curve (AUC) achieved by these models has plateaued at ~0.65.

Methods: This study proposed a multimodal blastocyst evaluation method using both blastocyst images and patient couple's clinical features (e.g., maternal age, hormone profiles, endometrium thickness, and semen quality) to predict live birth outcomes of human blastocysts. To utilize the multimodal data, we developed a new AI model consisting of a convolutional neural network (CNN) to process blastocyst images and a multilayer perceptron to process patient couple's clinical features. The data set used in this study consists of 17,580 blastocysts with known live birth outcomes, blastocyst images, and patient couple's clinical features.

Results: This study achieved an AUC of 0.77 for live birth prediction, which significantly outperforms related works in the literature. Sixteen out of 103 clinical features were identified to be predictors of live birth outcomes and helped improve live birth prediction. Among these features, maternal age, the day of blastocyst transfer, antral follicle count, retrieved oocyte number, and endometrium thickness measured before transfer are the top five features contributing to live birth prediction. Heatmaps showed that the CNN in the AI model mainly focuses on image regions of inner cell mass and trophectoderm (TE) for live birth prediction, and the contribution of TE-related features was greater in the CNN trained with the inclusion of patient couple's clinical features compared with the CNN trained with blastocyst images alone.

Conclusions: The results suggest that the inclusion of patient couple's clinical features along with blastocyst images increases live birth prediction accuracy.

Funding: Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs Program.

Keywords: artificial intelligence; blastocyst quality; computational biology; embryo evaluation; in vitro fertilization; live birth; medicine; multi-modal; systems biology.

Plain language summary

More than 50 million couples worldwide experience infertility. The most common treatment is in vitro fertilization (IVF). Fertility specialists collect eggs and sperm from the prospective parents. They combine the egg and sperm in a laboratory and allow the fertilized eggs to develop for five days into a multi-celled blastocyst. Then, the specialists select the healthiest blastocysts and return them to the patient's uterus. Since 1978, more than 8 million children have been conceived through IVF. Yet, only about 30% of IVF attempts result in a successful birth. As a result, fertility patients often undergo multiple rounds of IVF, which can be expensive and emotionally draining. Several factors determine IVF success, one of which is the health of the blastocysts selected for transfer to the uterus. Specialists select the blastocysts using several criteria. But these human assessments are subjective and inconsistent in predicting which ones are most likely to result in a successful birth. Recent studies suggest artificial intelligence technology may help select blastocysts. Liu et al. show that using artificial intelligence to assess blastocysts and fertility patient characteristics leads to more accurate predictions about which blastocysts are likely to result in a successful birth. In the experiments, the researchers trained an artificial intelligence computer program using pictures of 17,580 blastocysts with known birth outcomes and the parents' clinical characteristics. The model identified 16 parental factors associated with birth outcomes. The top 5 most predictive parental factors were maternal age, the day of blastocyst transfer to the uterus, how many eggs were present in the ovaries, the number of eggs retrieved and the thickness of the uterus lining. The program achieved the highest prediction of healthy births so far, compared to success rates listed in other studies. Artificial intelligence-aided blastocyte selection using patient and blastocyst characteristics may improve IVF success rates and reduce the number of treatment cycles patient couples undergo. Before specialists can use artificial intelligence in their clinics, they must conduct confirmatory clinical studies that enroll patient couples to compare conventional methods and artificial intelligence.

MeSH terms

  • Artificial Intelligence
  • Blastocyst
  • Female
  • Fertilization in Vitro* / methods
  • Humans
  • Live Birth*
  • Pregnancy
  • Retrospective Studies
  • Semen Analysis

Grants and funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.