Against the background of climate change, we studied the effects of a severe summer drought on buds of European beech (Fagus sylvatica L.) saplings and on leaves formed during the subsequent spring in trees attributed to different drought-damage classes. For the first time, we combined assessments of the vitality (assessed through histochemical staining), mass and stable carbon isotope ratios (δ13C) of buds from drought-stressed woody plants with morphological and physiological variables of leaves that have emerged from the same plants and crown parts. The number, individual mass and vitality of the buds decreased and δ13C increased with increasing drought-induced damage. Bud mass, vitality and δ13C were significantly intercorrelated. The δ13C of the buds was imprinted on the leaves formed in the subsequent spring, but individual leaf mass, leaf size and specific leaf area were not significantly different among damage classes. Vitality and δ13C of the buds are suitable indicators of the extent of preceding drought impact. Bud vitality may be used as a simple means of screening saplings for the flushing capability in the subsequent spring. European beech saplings are susceptible, but-due to interindividual differences-are resilient, to a certain extent, to a singular severe drought stress.
Keywords: bud formation; climate change; deciduous tree; drought damage; foliar nitrogen; isotopic signature; plasticity; resilience; triphenyltetrazolium chloride.