An exploration of the range of expert opinions on the optimum storage temperature for apples and pears in RA (refrigerated air), CA (controlled atmosphere), and DCA (dynamic controlled atmosphere) is provided, based on the accumulated postharvest data from the last 20 years. Apple cultivars have been divided into two storage temperature groups (0 to 1 °C and >1 °C), based on chilling sensitivity. Increasingly, gradual cooling, rather than rapid cooling, is recommended for apple cultivars, especially for chilling-sensitive cultivars. European pear cultivars are held at storage temperatures close to or just below 0 °C since they are not chilling-sensitive, and most cultivars require a cold temperature to induce ethylene production and ripening, especially if picked early for long-term storage. Asian pears apparently have higher temperature requirements in CA, compared with European pears. The temperature recommendations for RA and CA storage differ in some apple and European pear cultivars. In such cases, the CA recommendation is, on average, approximately 0.9 °C higher for apple cultivars and approximately 0.5 °C higher for pear cultivars, compared with RA. Research evidence suggests that some apple and pear cultivars can be stored at higher temperatures in DCA than in CA, and if the ethylene inhibitor, 1-methylcyclopropene (1-MCP), is applied in CA and/or DCA, leading to possible energy savings and quality benefits. A cool growing season may increase postharvest disorders, depending on cultivar and region. The store or packinghouse manager may choose to mitigate potential postharvest problems by maintaining the storage temperature at or above the temperature listed here and/or using stepwise (gradual) cooling. The storage temperature can affect the humidity and vapour pressure deficit (driving force) in the storage room. Altering the vapour pressure deficit controls the water loss in stored fruit, which can affect various quality parameters and the occurrence of several storage disorders.
Keywords: apples; chilling-sensitive; controlled atmosphere; dynamic controlled atmosphere; energy savings; pears; pre-harvest effects; refrigerated atmosphere; storage humidity; storage temperature.