Objective: To evaluate the mechanical properties of porous polyetherketoneketone (PEKK) meshes with different thicknesses, pore sizes, and porosities through finite element analysis to provide an optimal PEKK design for alveolar bone augmentation in the posterior mandibular region.
Methods: A three-dimensional evaluation model of severe alveolar bone defects in the mandibular posterior was constructed based on cone beam computerized tomography (CBCT) data. Then, PEKK meshes with different structural designs were obtained. Two key parameters were set with different values: five levels of thickness (0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, and 0.6 mm) and three levels of pore size (1 mm, 2 mm, and 3 mm) with a corresponding porosity of 19.18%-42.67%. A 100 N physiological force was simultaneously loaded by finite element analysis (FEA), and the deformation and stress data were outputted for further analysis.
Results: The deformation and stress of the PEKK meshes are negatively correlated with the changes in thickness and positively correlated with the changes in pore size. The FEA results show that the maximum deformation, equivalent stress, and maximum principal stress of the PEKK meshes are 0.168 mm-0.478 mm, 49.243 MPa-124.890 MPa, and 31.549 MPa-104.200 MPa, respectively. The PEKK mesh group with a thickness of 0.2 mm, pore size of 3 mm, and porosity of 42.67% is in danger of plastic deformation or even fracture during use.
Conclusion: According to the FEA results, the PEKK meshes with larger thicknesses and smaller pore sizes and porosities behave better. In consideration of reducing soft tissue stimulation and promoting bone regeneration, an ultrathin porous PEKK mesh with a pore size of no more than 3 mm, porosity of no more than 42.67%, and thickness of 0.2 mm can be used clinically to meet the mechanical performance requirements of the guided bone regeneration (GBR) structure.
Copyright © 2023 Xiaowen Hao et al.