In-Depth Insight into a Passive Film through Hydrogen-Bonding Network in an Aqueous Zinc Battery

ACS Appl Mater Interfaces. 2023 Feb 15;15(6):7949-7958. doi: 10.1021/acsami.2c18154. Epub 2023 Feb 2.

Abstract

Electrochemical stability and interfacial reactions are crucial for rechargeable aqueous zinc batteries. Electrolyte engineering with low-cost aqueous electrolytes is highly required to stabilize their interfacial reactions. Herein, we propose a design strategy using glutamic additive and its derivatives with modification of hydrogen-bonding network to enable Zn aqueous battery at a low concentration (2 m ZnSO4 + 1 m Li2SO4). Computational, in situ/ex situ spectroscopic, and electrochemical studies suggest that additives with moderate interactions, such as 0.1 mol % glutamic additive (G1), preferentially absorb on the Zn surface to homogenize Zn2+ plating and favorably interact with Zn2+ in bulk to weaken the interaction between H2O and Zn2+. As a result, uniform deposition and stable electrochemical performance are realized. The Zn||Cu half-cell lasts for more than 200 cycles with an average Coulombic efficiency (CE) of >99.32% and the Zn||Zn symmetrical cells for 1400 h with a low and stable overpotential under a current density of 0.5 mA cm-2, which is better than the reported results. Moreover, adding 0.1 mol % G1 to the Zn||LFP full cell improves its electrochemical performance with stable cycling and achieves a remarkable capacity of 147.25 mAh g-1 with a CE of 99.79% after 200 cycles.

Keywords: aqueous hybrid-ion battery; glutamic additive; hydrogen-bond network; in situ; molecular dynamics simulations; transmission X-ray microscopy.