Effects of a prothioconazole- and tebuconazole-based fungicide on the yield, silage characteristics, and fungal mycobiota of corn harvested and conserved as whole-crop and high-moisture ear silages

J Appl Microbiol. 2023 Jan 23;134(1):lxac033. doi: 10.1093/jambio/lxac033.

Abstract

Aims: To analyze the effect of a prothioconazole- and tebuconazole-based fungicide on the yield and silage characteristics of whole-crop corn (WCC) and high-moisture ear corn (HMC) silages and on the fungal community dynamics from the harvest to aerobic exposure.

Methods and results: Corn were untreated (NT) or treated (T) with a prothioconazole- and tebuconazole-based fungicide and harvested as WCC and HMC. Silages were conserved for 60 and 160 d and subjected to an aerobic stability test. The fungicide increased the yield per hectare however, it did not affect the main nutritional characteristics of WCC or HMC. The main chemical, fermentative and microbial characteristics, dry matter (DM) losses and aerobic stability were mainly affected by the conservation time, regardless of the treatment. Fusarium, Alternaria, Aspergillus, and Penicillium genera were identified as dominant before ensiling, but Aspergillus and Penicillium became dominant after silo opening and aerobic exposure. Yeast population during ensiling and aerobic deterioration resulted in a simplification, with Pichia and Kazachstania genera being dominant.

Conclusions: The application of fungicide improved the DM, starch, and net energy for lactation (NEL) yield per hectare but had no consistent effect on the microbial and fermentative silage quality and aerobic stability.

Keywords: mold; molecular identification; next generation sequencing; silage; yeast.

MeSH terms

  • Aerobiosis
  • Fermentation
  • Fungicides, Industrial* / pharmacology
  • Silage* / microbiology
  • Zea mays / microbiology

Substances

  • tebuconazole
  • Fungicides, Industrial
  • prothioconazole