Optically tunable bianisotropy in a sphere made from an epsilon-near-zero material

Opt Lett. 2023 Feb 1;48(3):783-786. doi: 10.1364/OL.476387.

Abstract

Bianisotropic media can be used to engineer absorbance, scattering, polarization, and dispersion of electromagnetic waves. However, the demonstration of a tunable light-induced bianisotropy at optical frequencies is still lacking. Here, we propose an experimentally feasible concept for a light-induced tunable bianisotropic response in a homogeneous sphere made of an epsilon-near-zero (ENZ) material. By exploiting the large linear absorption and the large possible intensity-dependent changes in the permittivity of ENZ materials, the direction-dependent scattering and absorption cross sections could be obtained. Our findings pave the way for further studies and applications in the optical regime requiring full dynamic control of the bianisotropic behavior.