Oncolytic virotherapy is a promising therapy for cancer. We previously established a recombinant measles virus (rMV-SLAMblind) that targets NECTIN4-expressing cancer cells and demonstrated its antitumor effects using a xenograft model in an immunodeficient mouse. In the current study, to investigate the immune response after rMV-SLAMblind therapy, we developed an immunocompetent cancer mouse model by introducing the NECTIN4 gene into mouse cancer cell lines. NECTIN4-expressing mouse cancer cells were successfully killed by rMV-SLAMblind in vitro. After transplantation of the NECTIN4-expressing tumor cells, rMV-SLAMblind significantly suppressed tumor growth in immunocompetent mice. Thus, this immunocompetent mouse cancer model could be a powerful tool in which to study the effect of rMV-SLAMblind therapy on the immune response. Using this model we found that rMV-SLAMblind elicited significant activation of natural killer cells, type 1 helper T cells and the tumor-specific CD8+ T-cell response in the tumor microenvironment. Immune cell depletion study revealed that CD8+ cells particularly played significant roles in the therapeutic efficacy of rMV-SLAMblind. Thus, rMV-SLAMblind exerts a therapeutic effect, not only directly by tumor cell killing, but also indirectly by efficient induction of antitumor immunity.
Keywords: NECTIN4; antitumor immune response; immunocompetent mouse model; oncolytic virotherapy; rMV-SLAMblind.
© 2023 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.