In this study, the effect of emulsifier mixture and their concentrations on the development of nanoemulsion was studied. The impact of sonication and microfluidization processing conditions on the physicochemical properties and in vitro antimicrobial activity was also evaluated. The optimal nanoemulsion formulation was then evaluated on bread surface against B. subtilis. Results showed that a hydrophilic-lipophilic balance HLB = 12 and emulsifier: oil ratio of 1:1 allowed the formation of stable nanoemulsion. Also, both microfluidization and sonication allowed the formation of nanoscale-emulsion. Sonication treatment for 10 min allowed a maintain the total flavonoid content and a slight reduction of total phenol content. Furthermore, employing sonication resulted to the lowest polydispersity index suggesting more stable nanoemulsion. Nanoscale-emulsion showed a good in vitro antimicrobial activity against L. monocytogenes and E. coli. The application of nanoemulsion on bread surface inoculated with B. subtilis showed a delay of the decay.
Supplementary information: The online version contains supplementary material available at 10.1007/s13197-022-05660-5.
Keywords: Antimicrobial activity; Encapsulation; Food safety; Nanoemulsion; Stability.
© Association of Food Scientists & Technologists (India) 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.