GEARBOCS: An Adeno Associated Virus Tool for In Vivo Gene Editing in Astrocytes

bioRxiv [Preprint]. 2024 Oct 10:2023.01.17.524433. doi: 10.1101/2023.01.17.524433.

Abstract

CRISPR/Cas9-based genome engineering enables rapid and precise gene manipulations in the CNS. Here, we developed a non-invasive astrocyte-specific method utilizing a single AAV vector, which we named GEARBOCS (Gene Editing in AstRocytes Based On CRISPR/Cas9 System). We verified GEARBOCS' specificity to mouse cortical astrocytes and demonstrated its utility for three types of gene manipulations: knockout (KO); tagging (TagIn); and reporter knock-in (GeneTrap) strategies. Next, we deployed GEARBOCS in two test cases. First, we determined that astrocytes are a necessary source of the synaptogenic factor Sparcl1 for thalamocortical synapse maintenance in the mouse primary visual cortex. Second, we determined that cortical astrocytes express the synaptic vesicle associated Vamp2 protein and found that it is required for maintaining excitatory and inhibitory synapse numbers in the visual cortex. These results show that the GEARBOCS strategy provides a fast and efficient means to study astrocyte biology in vivo .

Motivation: Astrocytes are indispensable for brain development, function, and health. However, molecular tools to study astrocyte biology and function in vivo have been largely limited to genetically modified mice. Here, we developed a CRISPR/Cas9-based gene editing strategy within a single AAV vector that enables efficient genome manipulations in astrocytes. We designed and optimized this easy-to-use viral tool to understand gene expression, protein localization and function in astrocytes in vivo .

Publication types

  • Preprint