Staphylococcus aureus is a gram-positive bacterium, representing one of the most important nosocomial pathogens. The treatment of infections, caused by S. aureus, has become increasingly intricate due to the emergence of highly resistant strains. Therefore, it is obvious that an effective prevention strategy against this bacterium could significantly decrease such infections. In the present study, the protective efficacy and immunological properties of recombinant autolysin, formulated in Montanide ISA266 and Alum adjuvants with Glucomannan as a polysaccharide, were assessed in the systemic mouse model of infection. Mice were immunized with the purified recombinant protein in various formulations in different groups and, subsequently, mice were challenged with 5 × 108 CFU of bacteria for the evaluation of their survival and bacterial clearances in the internal organs. ELISA was performed to determine the type of induced immunity, cytokine secretion (IFN-γ, IL-4, IL-2, and IL-17), and isotyping (IgG1 and IgG2a). In addition, we measured the opsonophagocytic activities of the antibodies. Results showed that immunization with r-autolysin + Alum + Glucomannan and r-autolysin + MontanideISA266+Glucomannan formulations significantly increased total IgG and isotypes (IgG1 and IgG2a), as compared with other vaccinated and control groups. Furthermore, the formulation of r-autolysin in Alum and MontanideISA266 adjuvants with Glucomannan enhanced IFN-γ, IL-4, and IL-17 cytokine secretion as well as protectivity, following experimental challenge. We concluded that Glucomannan has the potential to induce immune responses and would be used as an adjuvant factor in vaccine formulation.
Keywords: Adjuvant; Autolysin; Glucomannan; Staphylococcus aureus; Vaccine candidate.
Copyright © 2023 Elsevier Ltd. All rights reserved.